The Pancreas Centre BC is pleased to announce the winners of the recent 2014 IDEAS Grants program competition. This research funding program was made possible by the generous donations from private donors. The centre has received 11 applications and the research advisory committee recommended four proposals for funding. Pancreas Centre BC anticipates that the funds invested into the projects will accelerate leading edge research aimed at understanding and treating pancreatic cancer.
Congratulations to the 2014 IDEAS grant recipients:
Robert Holt
Mutation reactive autologous T cells for the treatment of pancreatic cancers
Unfortunately most pancreatic cancer patients tend to have poor outcomes. Surgery is the mainstay of treatment, but even for patients where the tumor has been surgically removed, there is a poor chance for survival because the cancer returns. Our aim is to develop an immune-based pancreatic cancer treatment that will reduce the chance of cancer recurrence. While the ability of the immune system to recognize cancer cells as non-self due to their underlying mutations is well known, established tumors can suppress these natural immune responses, or the immune responses can fail to activate in the first place. Recent advances have provided methods to expand and purify anti-cancer immune cells from blood, and deliver these immune cells to patients as therapy. In this proposal we will test the feasibility and reliability of isolating immune cells that recognize a common pancreatic cancer mutation, in a gene called KRAS, and we will evaluate the ability of these immune cells to kill pancreatic cancer cells. These pilot experiments will generate essential data that will inform the next critical steps of preclinical development for this type of cancer immunotherapy.
James Johnson
Testing the causality of hyperinsulinemia in pancreatic cancer
The public has an enormous stake in knowing whether excessive levels of insulin play a role in cancer. Current health recommendations advocate for diets that lead to relatively high levels of insulin. Millions of people depend on insulin as a treatment for the life threatening complications of diabetes. The epidemiological approaches used to date are unable to isolate the effects of insulin or identify the molecular mechanisms. The innovative mouse model we have developed is the only tool available that can specifically and directly test the hypothesis that insulin itself is involved in cancer. The results of our study will have immediate and profound ramifications. Information on the molecular mechanisms of insulin action may also be used to design a new class of selective compounds to kill pancreatic cancer cells, without affecting normal cells of the pancreas. Our ultimate goal is to see the day when a diagnosis of pancreatic cancer can be associated with hope for a full recovery.
Janel Kopp
Genetics of ductal- and acinar-cell-derived pancreatic ductal adenocarcinoma
Pancreatic cancer is the fourth leading cause of cancer-related deaths in Canada. There are many types of pancreatic cancer, but pancreatic ductal adenocarcinoma (PDAC) is the most common (95% of all cases). This cancer has often been called the “silent killer” because it often does not cause symptoms until very late stages of the disease. At this point, treatment options are limited because the tumor is very resistant to chemotherapy and surgery is not an option. To improve the outcome of this disease, we need to better understand what causes it and how it develops so that we can develop better tools to recognize the PDAC earlier. To begin to understand this disease better, we have developed new mouse models to examine which cell type initiates PDAC and how tumors arising from different cell types contribute to the development of variation, or heterogeneity, between patients. In the proposed research, we will specifically examine whether each cell type requires a different set of genetic changes to initiate PDAC. Differences identified by these studies may be used in the future to distinguish which cell type initiates PDAC in patients and predict response to therapy and differences in survival. Altogether, these studies will examine the impact of early tumor-initiating events on PDAC heterogeneity and their contribution to differences in clinical outcomes for patients.
Julian Lum
Developing an optimized method for growth and expansion of lymphocytes for adoptive cell therapy in pancreatic cancer
The survival rate for pancreatic cancer patients at 5 years is less than 6%, making it one of the deadliest forms of cancer. New approaches to treat pancreatic cancer are urgently needed. Cancer immunotherapy is a type of treatment that harnesses the immune system to fight cancer. One form of cancer immunotherapy called adoptive T cell therapy involves collecting immune cells (called T cells) from a patient’s tumor and growing them in the laboratory. These T cells are then infused back into the patient with the expectation that they seek out and destroy tumor cells. The goal of this study is to develop optimized procedures for growing T cells that can specifically target pancreatic tumors. We will use cutting-edge genomic sequencing technology to assist us in determining the best methodologies for adoptive T cell therapy. Our work will utilize the resources and patient samples of the Pancreas Centre BC. We expect that the outcome of our study will help facilitate moving towards a clinical trial of adoptive T cell therapy for pancreatic cancer patients within the next few years.
For more details about all funded projects click here.